Beam Me Up Scotty – Will One Day Be Reality!

Share

In Trekkie terms, they have created the 1st transporter.  In scientific terms:

Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion (Yb+) is teleported to a second Yb+ atom with an average fidelity of 90% over a replete set of states. The teleportation protocol is based on the heralded entanglement of the atoms through interference and detection of photons emitted from each atom and guided through optical fibers. This scheme may be used for scalable quantum computation and quantum communication….”

Beam Me Up!

Now, for regular science readers.  Let’s just say it works! Don’t ask me to explain any of this.

“…Scientists have come a bit closer to achieving the “Star Trek” feat of teleportation. No one is galaxy-hopping, or even beaming people around, but for the first time, information has been teleported between two separate atoms across a distance of a meter — about a yard.

This is a significant milestone in a field known as quantum information processing, said Christopher Monroe of the Joint Quantum Institute at the University of Maryland, who led the effort.

Teleportation is one of nature’s most mysterious forms of transport: Quantum information, such as the spin of a particle or the polarization of a photon, is transferred from one place to another, without traveling through any physical medium. It has previously been achieved between photons (a unit, or quantum, of electromagnetic radiation, such as light) over very large distances, between photons and ensembles of atoms, and between two nearby atoms through the intermediary action of a third.

None of those, however, provides a feasible means of holding and managing quantum information over long distances.

Now the JQI team, along with colleagues at the University of Michigan, has succeeded in teleporting a quantum state directly from one atom to another over a meter. That capability is necessary for workable quantum information systems because they will require memory storage at both the sending and receiving ends of the transmission.

In the Jan. 23 issue of the journal Science, the scientists report that, by using their protocol, atom-to-atom teleported information can be recovered with perfect accuracy about 90 percent of the time — and that figure can be improved.

“Our system has the potential to form the basis for a large-scale ‘quantum repeater’ that can network quantum memories over vast distances,” Monroe said. “Moreover, our methods can be used in conjunction with quantum bit operations to create a key component needed for quantum computation.”

A quantum computer could perform certain tasks, such as encryption-related calculations and searches of giant databases, considerably faster than conventional machines. The effort to devise a working model is a matter of intense interest worldwide….”

Share